
JOURNAL OF APPROXIMATION THEORY 11, 260-274 (1974)

Geometrical Characterizations for

Nonlinear Uniform Approximation

DIETRICH BRAESS

Institut fur Mathematik,
Ruhr·Universitiit, 463 Bochum, West Germany

1. INTRODUCTION

In the study of nonlinear approximation there has arisen the famous
problem to characterize Chebyshev sets (i.e., sets for which there is always a
unique best approximation) by geometrical properties [22]. When the best
approximation is searched in subsets of smooth and strictly convex Banach
spaces, then convexity is the dominating property. According to well-known
results of Efimov and Stechkin [13] and of Vlasov [27] Chebyshev sets in
these spaces are convex, provided that they are suns. Moreover, this addi
tional assumption may be replaced by approximative compactness and it may
be abandoned in finite-dimensional spaces. References for related problems
are given in Refs. 12, 17 and 25.

On the other hand, convexity is neither necessary nor sufficient for unique
ness of best uniform approximation. This holds even in ~2, as is shown by
the examples in Fig. 1. Therefore, there has been a continuous search for
those properties of nonlinear families of functions which are most essential.
As a consequence, several properties and conditions (which are equivalent
to being a sun or more restrictive) have been introduced by different authors.
Since it is often difficult to understand the relationship between them, we list
the properties known to us and verify their relationship before we prove that
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total regularity dominates the uniqueness problem for uniform approxima
tion. The results are very similar to those for smooth and strictly convex
spaces, provided that convexity is replaced by total regularity.

2. LIST OF PROPERTIES

Let Q be a compact set, and let the space of continuous, real valued
functions C(Q) be endowed with the uniform norm

11/11 = sup Ij(x)l.
",eQ

(2.1)

In particular, if Q is a finite set consisting of n points, then C(Q) may be
identified with Iffin topologized according to (2.1). The set of extremal points
of/E C(Q) will be denoted by M[f]:

M[f] = {x E Q; Ij(x)1 = II/II}· (2.2)

Let V be a nonvoid set of functions. When considering the properties we will
present parameter-free definitions as far as possible. On the other hand, if
we refer to tangent spaces, then we assume that V may be represented in the
form

V = {F[a] = F(a, x); a E P},

where P is an open subset in m-space and F possesses a Frechet derivative
with respect to a at each point a EP. If a property requires that Q is an
interval, we write V C C(I).

The following properties are listed in Fig. 2.

(WH) A subspace V C C(I) with dimension n satisfies the weak Haar
condition, if each v E V has at most n - 1 changes of sign; i.e., there do not
exist points Xl < X2 < ... < Xn+l such that V(Xi) • V(Xi+l) < 0, i = 1,2,..., n
[16].

(B) V has the betweenness property, if given a pair Vo , VI E V there exists
a mapping [0, 1] 3 t ~ Vt E V, such that for all x E Q, Vt(x) is either a strictly
monotone continuous function of t or a constant [10]. We note that families
with the betweenness property are boundedly connected [c.r. (HM)].

(R) V is regular, if given a pair v, Vo E V and a closed set A C Q with

inf I vex) - Vo(X) I > 0,
xeA

(2.3)

the element Vo is contained in the closure of the set

{v E V; (v(x) - vo(x)) . (v(x) - vo(x)) > °for x E A}. (2.4)

[7.8]. The regularity is called closed sign property in Ref. 9.
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FIG. 2. Relationship of the properties.

(D) V satisfies the representation condition, if given a pair v, Vo E V there
exists a positive function g E C(Q) and a w in the tangent space at Vo such that
v - Vo = g . w [18].

(A C) V is asymptotically convex, if given a pair v, Vo E V there exists a
positive function g E C(Q) and a mapping [0, 1] 3 t -- Vt E V such that

11(1 - tg) . Vo + tgv - Vt II = oCt) (2.5)

as t -- O. Originally, in Ref. 21 instead of (2.5) the relation

(2.6)

is used, with the mapping t -- gt E C(Q) being continuous. But (2.6) implies
(2.5), if g = go is inserted.

(K2) For Vo E V the cone ~[vo, V] consists of the elements g E C(Q)
satisfying the following. For every neighborhood U ofg and for every E > 0
the set UO<ll« (vo + 1]U) intersects V. V is a Kolmogorov set of the second
kind [8] if Vois a best approximation tof, whenever

min (f(x) - vo(x)) . hex) ,,;:; 0
XEM[f-vol

(2.7)

holds for every h E ~[vo, V].

(HM) An n-dimensional Cl~manifold V C C(l) is Haar embedded, if the
tangent space at each point is an n-dimensional Haar subspace. V is boundedly
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compact (boundedly connected, respectively) if the intersection of V with
every open ball is relatively compact (connected, respectively) or it is empty
[28,29].

(LH) V C C(l) satisfies the local Haar condition if the tangent space at
each element Vo is a Haar subspace. Let d(vo) be its dimension. V satisfies the
global Haar condition, if for every v E V\{vo} the difference v - Vo has
at most d(vo) - 1 zeros [21].

(T) V C C(l) is an n-parameter family or unisolvent, if given (Xi, Yi),
(i = 1,2,..., n), Xl < X2 < ... < X n there is a unique v E V, such that
V(Xi) = Yi , i = 1, 2, ..., n [23, 26].

(V) V C C(l) is solvent of degree m = m(vo) at Vo , if given m distinct
points Xi' i = 1,2,..., m and € > 0 there is a 0 = o(vo, €, Xl ..• Xm) > 0
such that IYi - VO(Xi) I < ;) implies the existence of a v E V, satisfying

i = 1,2,... , m,

as well as II v - Vo [I < €. If, in addition, the difference v - Vo has at most
m(vo) - 1 zeros for every v E V\{vo}, then V is varisolvent [24]. V satisfies
the density condition, if given Vo E V and € > 0 there exists a v E V such that
o < vex) - vo(x) < € (and 0 > vex) - vo(x) > -€, respectively) [11]. Note
that the definition ofvarisolvency given in Ref. 14 is more restrictive. As was
pointed out in Ref. 3 varisolvent families may only be defined on sets that
are homeomorphic to a subset of a circumference.

(TR) A pair vl , Vo of distinct elements of V is zero-sign compatible if
given a closed subset Z of the zeros of Vl - Vo and S E C(Z) taking the values
+I and -1, there exists a v E V such that sign(v(x) - vo(x» = sex) for x E Z
[9]. If all pairs of distinct elements of a regular set V are zero-sign compatible,
V is called totally regular.

(U) V is a uniqueness set, if for each IE CCQ) there is at most one best
approximation to I in V.

(8U) V satisfies a strong uniqueness condition, if given IE CCQ) and a
best approximation Vo to I in V there is a constant c > 0 such that

III - v II ? III - Vo II + c II v - Vo II

for v E V.

(8) V is a sun if whenever Vo E V is a best approximation to IE C(Q),
then Vois also a best approximation to Vo + A(f - vo) for all A ? 0 [12].

(M) K(vo,f) = UA>O B(vo + A(f - vo), AIlf - Vo If) with B(f, r) denoting
the open ball with radius r centered at.f. V is a moon if Vo E V, IE C(Q) and
V 1\ K(vo,f) =F 0 implies that the closure of V 1\ K(vo,f) contains vo , [1].
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3. EXAMPLES

Before we verify the relationship of the properties shown in Fig. 2 we give
some examples and note some simple features.

Observe that apart from (K2), (SU), (U) (M) and (S) the families are
characterized by intrinsic properties, i.e., the definitions do not refer to the
approximation of elements. Moreover, the graph may nearly be divided into
two branches. The left-hand branch is dominated by conditions like convexity
and the right one by varisolvency. This seems quite natural since the Haar
subspaces are the only families that are both convex and varisolvent.

We note that (D), (AC), (K2), (R), (LH), (V) and (TR) are hereditary, i.e.,
whenever the family V has the property, this also holds for every nonvoid
subfamily V n U provided that U is open in C(Q).

Now we list some examples.

(WC) Spline polynomials. Let k be an arbitrary positive integer and
define the functions (x)~ = x k if x ~ 0, = 0 otherwise. Choose knots
-1 < ~I < ~2 < '" < ~n < 1. The linear subspace spanned by 1, x··· xk

,

(x - ~I)~ ... (x - ~n)~ satisfies the weak Haar condition [16].

(C) The set of nondecreasing polynomials of degree ~ n is convex [20].

(B) Let Q be a set with two points. Set

(3.1)

Obviously, V has the betweenness property. As was pointed out in Ref. 8
(p. 374) this set is not a Kolmogorov set ofthe second kind.

(D) The proper sums of exponentials

If exjet;X;exj,tjEIR,j= 1,2"'n1
J~I \

(3.2)

satisfy the representation property [18, p. 286].

(A C) Let VI and V2 be convex sets in C(Q). Then the set of rational
functions V = {v = VI /V2; vlx) > 0, VI E VI' v2 E V2} is asymptotically
convex provided that it is not empty [21, p. 305].

(K2) Let P = U:~I {ex E IR; 4-k < ex < 2 . 4-k
} U {O}. Then the set of

constant functions V = {v; vex) = ex, ex E P} is a Kolmogorov set of the
second kind which is not asymptotically convex.

(HM) Let p E CI(IR) with p' =1= O. If H is a Haar subspace, then V =
{vex) = p(h(x)); h E H} is a CI manifold with the additional properties
[28, p. 369].
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(T) The set of functions

v = {vex); vex) = -cx + d or vex) = ce'" + d, c, dE IR, c ~ O}

is a two-parameter family [26].

(LH) The y-polynomials

If Cijy(tj ; x); Cij E IR, t j E T,j = 1,2 ... n1
L=l \

265

(3.3)

satisfy the local and global Haar condition provided that thekernel y E C(IX T)
is extended sign-regular [4]. A well-known example for y-polynomials are the
exponentials (3.2).

(V) The y-polynomials are varisolvent if the kernel is only strictly
sign-regular and the derivatives oy(t, x)!ot do not exist [4, Theorem 4.1].
Moreover, if the exponentials are generated by the kernel Yet, x) = exp(t3x)
and not by exp(tx), then the family (3.3) has the property (V) but not (LH).
Referring to exponentials again we emphasize that the closure of a varisolvent
family need not be varisolvent and not even regular.

(TR) The subset of exponentials with non-negative coefficients

V = If Cije
t
;"'; Cij ~ 0, t j E 1R1

L=l \
is not varisolvent but it is totally regular. Since best approximations may be
characterized by alternants [2] the set is a sun and regular. When Vo has
exactly k positive Cij , 1 ~ j ~ n, then v - Vo has at most 2k zeros, whenever
VE V and Vis solvent of degree 2k at Vo. This implies zero-sign compatibility.
Finally, we note that the set (3.1) is totally regular. Hence, totally regular sets
are not always Kolmogorov sets of the second kind.

4. COMPARISON OF PROPERTIES

In this section we will verify the relationship between the properties,
leaving only the restricted implications (U) =? (8) and (R) =? (B) to later
considerations. We will confine ourselves to give a reference as far as possible.

(H) =? (WH) =? (L) =? (C) =? (B) =? (R). Obvious.

(C) =? (AC). Set Vt = Vo + t(v - vo) and g == 1.

(AC) =? (K2). Let Vo satisfy the local Kolmogorov criterion (2.7) and let v
be a distinct point in V. Choose g and Vt according to the definition of
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asymptotic convexity and set hex) = g(x)(v(x) - vo(x)). By virtue of (2.5)
we have

(4.1)

i = 1,2'" n,

with II k t [I = oCt) as t -+ 0. If U is an arbitrary neighborhood of h, then
h + k t E U holds for sufficiently small t. Hence, h E ~(vo, V) and

min (f(x) - vo(x)) . hex) :(; 0.
M[f-voJ

From g(x) > °it follows that

min (f(x) - vo(x)) . (v(x) - vo(x)) :(; 0.
M[f-voJ

Since this inequality holds for each v E V, it follows that Vois a best approxima
tion and that (2.7) is a sufficient condition. This result improves the statement
that convex sets are Kolmogorov sets of the second kind [8, Theorem 3].

(K2) => (KI). Reference 8.

(L) => (D). Obvious.

(D) => (Ae). Theorem 4 in Ref. 18.

(H) => (HM). Obvious.

(HM) => (LH). Haar embedded manifolds satisfy the local Haar condition
by definition. Assume that the global Haar condition is violated and that the
difference VI - Vo has n zeros (VI =1= vo). Then by standard arguments
[24, p. 299] a function V2 is constructed such that V2 - Vohas n changes ofsign.
Choose tl < t2 < ... < tn+l such that

(v2 - VO)(gi) . (v2 - VO)(gi+l) < 0,

and let S E C(l), II s II = 1 satisfy

S(gi) = sign(v2 - VO)(gi), i = 1,2 ... n + 1,

sex) . (v2 - vo)(x) ;? 0, X E I.

Then Vo is not a unique best approximation to I = Vo + II V2 - Vo II . s,
contradicting the assertion that f - Vo alternates n + 1 times.

(HM) => (T). If n points (Xi' Yi), i = 1, 2 ... n are given, it follows from
bounded compactness that the infinum of the function

is attained at some elements Vo in V. Assume that the minimal value is not
zero. Then a function IE C(l) satisfying I(xi) = Yi, i = 1,2 ... n is easily
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constructed, to which vo is not a best approximation in V. This is a contra
diction. Since V satisfies the global Haar condition, the solution of the inter
polation problem is unique.

(HM) => (SU). Let vo be the best approximation to f To prove a strong
uniqueness relation we consider three regions. By virtue of Lemma 9 in
Ref. 28 there is an r > 0 and a Cl > 0 such that II v - Vo II < r, v E V implies

Ilf - v II ~ Ilf - Vo II + clll v - Vo II·

From uniqueness and bounded compactness we conclude that in the region
r :(; II v - Vo II :(; 311f - VO II, v E V,

inf{llf - v II} = 0: > Ilf - Vo II·

Hence, there the inequality

IIf - v II ~ Ilf - Vo II + c2 11 v - VO II

holds with C2 = (1/3)(0: - Ilf - Vo ID/llf - VO II· Finally, if II v - VO II >
311f - Vo II is valid, the triangle inequality yields

Ilf - v II ~ II v - Vo II -lif - Vo II ~ lif - Vo II + (1/3) II v - Vo II·

This proves strong uniqueness.

(LH) => (V). By virtue of the implicit function theorem the local Haar
condition implies solvency of degree d(vo). Combining this with the global
Haar condition yields varisolvency. Since v E V is not a best approximation
to f = v + (E/2) . 1 and f = v - (E/2) . 1, respectively, we obtain the
density condition.

(LH) => (K2). Theorem 7 in Ref. 8.

(LH) => (D) provided that the elements of V and of the tangent spaces
are analytic functions and that zeros may be counted with their multiplicities:
Theorem 7 in Ref. 8.

(LH) => (SU) holds with the following restriction. If V satisfies the local
and global Haar condition, and if f has a best approximation Do such that
d(vo) is maximal in V, then Vo satisfies a strong uniqueness condition. The
proof proceeds similarly to that of (HM) => (SU).

(T) => (V). By definition unisolvency implies varisolvency. The density
property follows from the fact that the degree of solvency is constant [5].

(V) => (TR). Since the best approximation may be characterized by
alternants, it follows that the sets with property (V) are suns and regular.
The zero-sign compatibility is a consequence of the fact that the degree of
solvency is greater than the number of zeros.
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(TR) => (R). By definition.

(SU) => (U). Obvious.

(TR) ::;. (U) and (U) ::;. (TR) provided V is a sun. [9, Theorem 5].

(R) <c> (S) <c> (M). This is a consequence of a more general result.

THEOREM 4.1. For every nonvoid set V C C(Q) the following are equivalent.

(a) V is regular.

(b) V is a Kolmogorov set of the first kind, i.e., ifVoE V is a best approxima
tion to f in V, then for every v E V

inf (f(x) - vo(x))(v(x) - vo(x)) ~ O.
xEM[r~vo]

(c) V is a sun.

(d) V is a moon.

(e) Every local best approximation in V is a best approximation.

(f) If Vo is a best approximation to f in V, then for every v E V the element
Vo is also a best approximation to f in the convex hull ofv and Vo (which may be
interpreted as the straight line between Vo and v).

The equivalences (a) <c> (b) <c> (c) and (c) <c> (f) were proved in Refs. 8
and 6, respectively. Moreover (c) <c> (d) is a consequence of Corollary 2.9 and
Corollary 4.2 in Ref I. Finally, by virtue of Theorems 3 and 4 in Ref 9 we
have (e) <c> (a).

5. CHARACTERIZATION OF CHEBYSHEV SETS

By collecting properties after some redefinitions we established for the
uniform approximation that a sun is a uniqueness set if and only if it is
totally regular. Hence, we have a characterization by an intrinsic property
under an additional assumption which is less restrictive than the assumptions
in Refs. 7 and 19. (Referring to the approximation by positive sums of
exponentials [the example to (TR) in Section 3] it seems plausible that a
general uniqueness criterion will not only incorporate numbers of zeros).
Furthermore, observe that the uniqueness theorem in Ref. 15 does not use
only intrinsic properties.

Now the situation is very similar to the approximation in smooth and
uniformly convex spaces, where suns are uniqueness sets if and only if they
are convex [13, 27]. In those spaces Chebyshev sets are known to be suns
provided that they are approximatively compact [25]. We will establish an
analogous result for the uniform norm.
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THEOREM 5.1. Let V C C(Q) be a Chebyshev set. Assume that one of the
following conditions holds.

(a) V is approximately compact.

(b) The operatorTTv: C(Q) -- V which sendsfE C(Q) to its best approxima
tion, is continuous.

(c) dim C(Q) < 00.

Then V is a sun.

Proof Suppose that V is not regular. Then there is a pair v, Vo E V, a
closed nonvoid set A C Q satisfying (2.3) and a real number'\ > 0, such that

{v E V; II v - VO [I < '\, (v(x) - vo(x»(v(x) - vo(x» > 0 for x E A} = 4>.
(5.1)

By virtue of Uryson's extension theorem there is a function if; E C(Q)

I
I, if xEA,

if;(x) = 0, if vex) = Vo(X),
o < if; < I, otherwise.

Then cp(x) = if;(x) . sign[v(x) - vo(x)] defines a continuous function. For
tX ~ 0, let

h = Vo + tX . cp.

Since A is nonvoid, it follows that II cp II = I and

Ilh - VO II = tX. (5.2)

From (5.1) we conclude that Vo = TTv(h), 0 < tX < ,\f2. On the other hand
we have with [3 = II v - VoII,

Ih(x) - V(x) I = I vo(x) + [3cp(x) - v(x) I
= II vex) - Vo(x) I - [3if;(x)l· (5.3)

Since the right side of (5.3) is bounded by the difference of two non-negative
terms not exceeding [3, it follows that

1118 - v II < [3 = II.is - Vo II·

Uniqueness implies Vo =1= TTvCh). Set

y = sup{tX E IR; TTv(h) = vo}.

(5.4)

(5.5)

As is well known, the set on the right-hand side. of (5.5) is connected and
closed. This yields Vo = TTv(j,,). From (5.4) we know that y < [3 holds. By
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standard arguments the sequence vp = TT,,(h+l/p), P = 1,2,3,... is a minimal
sequence forfy. By virtue of Vp =I=- Vo and (5.1) we obtain

II Vp - VO II ~ A. (5.6)

If V is approximately compact, a subsequence of {vp } converges to a best
approximation v* ofh , satisfying II v* - VO II ~ A. This contradicts unique
ness.

If TT" is continuous, then (5.6) establishes a contradiction.
Every Chebyshev set is closed. It is approximately compact in spaces of

finite dimension. Hence, the prooffor (c) reduces to (a). I
Since approximately compact sets are existence sets, we have the following:

COROLLARY 5.2. An approximatively compact set in C(Q) is a Chebyshev
set, if and only if it is totally regular.

In the finite-dimensional case even fewer assumptions are necessary.

COROLLARY 5.3. Let Q be a finite set. A nonvoid set V C C(Q) is a
Chebyshev set, ifand only if it is closed and totally regular.

6. REGULAR SETS IN IRn

In this section we will prove that closed, regular sets have a property which
almost coincides with the betweenness property, provided that Q is finite and
consists ofn points. To be more precise, we will prove the following.

THEOREM 6.1. Let V be a regular, closed set in IRn • Then given u, WE V,
there exists a continuous arc Vt , 0 ~ t ~ I from u to W in V such that all
coordinates vr are monotone functions of t. The functions Vtm are strictly
monotone, provided that

u" =I=- W", k = 1,2 ... n. (6.1)

For convenience, we assume u" ~ w", k = 1,2 ... n. We use the notation

[u, w] = {v E IR n
; u" ~ v" ~ W"}

and denote the interior of this set by int[u, w]. The proof of the theorem is
prepared by a lemma.

LEMMA 6.2. Let V be a regular, closed set in IRn • Let 1 ~ m ~ n. Assume
that u, W E V and um < IX < wm •
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(i) There is a VE V () [U, w] satisfying vm = ex.

(ii) There is a VE V () int[u, w] satisfying vm = ex provided that the strict
inequalities (6.1) hold.

ProofofLemma 6.2. Given E > 0, consider the set

{v E V; Uk - E 0( vk 0( wk + E, k = 1,2 ... n, vm 0( ex}.

Since V is closed, this set is compact and the function ep(v) = vm attains its
maximum in this set at a point called v•. We have v.m = ex, since v.m < ex
leads to a contradiction to regularity when applied to the pair v. , w. Since E

is arbitrary, the proof of (i) is completed by compactness arguments.
If (6.1) holds and V is regular we may chose ii, WE V such that

k = 1,2 '" n,

By applying (i) to the pair ii, Wwe obtain (ii). I
Proof of Theorem 6.1. Starting with Bo = {u, w}, we construct sets Bv

with 2v + 1 elements, v = 1,2,3... satisfying

Bo C B1 C··· C Bv C Bv+! C··· C V () [u, w]. (6.2)

Moreover, the elements of each Bv can be ordered such that with increasing
index all coordinates are nondecreasing [strictly increasing, respectively,
provided that (6.1) holds].

Assume that Bv has been constructed. Let Bv = {vp ; p = 0, 1 ... 2v}, where
the elements are ordered as stated above. Now we choose an integer m,
1 0( m 0( n, satisfying

m -1 = v(modn). (6.3)

By applying Lemma 6.2 to the pairs V p - 1 ,. Vp , P = 1,2 ... 2v we obtain 2v

points vp E V with

and

V~_l 0( v/ 0( v/, (V~-l < vp
k < v/, respectively), k = 1,2 ... n (6.4)

By adding these 2v points to Bv , the set Bv+! is defined. Obviously, Bv+! has
the properties stated above. Observe that by virtue of (6.3) the distance
between successive points is reduced to less than a half, whenever n steps are
performed. Hence, the distance between successive points in Bn .... is not
greater than

2-1'11 w - ull. (6.5)
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Set Boo = U:1 Bv • We use the notation B for the closure of Boo in ~n. The
mapping

is continuous. By (6.5) we conclude that ep(B) is dense in [0, 1]. Since Band
ep(B) are compact, it follows that ep(B) = [0, 1]. To prove that ep is injective,
let VI' V2 E B and VI =1= V2 • For convenience we assume that VIm < v2

m for
some m ~ n. By the definition of Band (6.5) there exist points i\ ,v2 E B
satisfying

The construction assures

(Vl
lc < v/, respectively), k = 1,2 ... n.

Since VI and V2 are cluster points of elements of B n [u,v1] and B n [v2 , w]
we have

(v/ < v27c, respectively), k = 1,2 ... n,

and ep(V1) < ep(V2)' Since ep is a bijective mapping of a compact set, ep-1 is
continuous. Moreover, the preceding discussion establishes the monotonicity
of the coordinates. I

From Theorem 6.1 we know that every regular and closed set in ~n is
connected. Even the intersection with every closed ball is connected. As a
consequence we have

COROLLARY 6.3. Let VeRn be a regular existence set. Then for every
f E IRn the set of the best approximations in V is connected.

As is shown in Fig. 3, Theorem 6.1 yields a geometrical structure that is
comparable with convexity. If u, WEve ~2, convexity requires that the
straight line between u and W is contained in V, whereas regularity requires

~-------------",_w

u~;"-~==-----------l

FIG. 3. Convexity and regularity.
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only the existence of an arc from u to w in V, which proceeds within the
rectangle [u, w].

The difference between regularity and total regularity becomes apparent
when a pair u, W EVe ~2 is considered whose second coordinates coincide
(Fig. 4). If V is totally regular, then in every neighborhood of the straight
line [u, w] there is an arc from u to w above the line and an arc below it.
On the other hand, regularity only implies that the straight line belongs to V.

u <:::::::: ----:::::::>0 w

FIG. 4. Total regularity.

Note Added in Proof Recently Dunham [31] has given an example of a Chebyshev
set which is not a sun. If we would drop the word "continuous" in the definition of the
betweenness property, then the set of the example would have that property. This fact also
illustrates that continuity is essential for the proof of the implication (B) => (R).

As was pointed out by Brosowski and Deutsch [30], the hypothesis in Theorem 5.1 may
be relaxed.
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